Autophagy adaptors mediate Parkin-dependent mitophagy by forming sheet-like liquid condensates
Abstract
Synopsis
Introduction
Results
Autophagy adaptors show distinct distributions during Parkin-mediated mitophagy
OPTN and NDP52 show a dynamic exchange between the mitochondrial surface and cytosol
Mathematical models of condensate formation and localisation of autophagy adaptors
OPTN condensates redistribute upon membrane contact
Liquid-like property of OPTN condensates is required for mitophagy
Liquid-like property of OPTN condensates is required for initiation of mitophagy by recruiting ATG9 vesicles and activating TBK1
Discussion
LLPS by autophagy adaptors during Parkin-mediated mitophagy
LLPS in bulk and selective autophagy
The importance of phase separation during mitophagy
Methods
Reagent/resource | Reference or source | Identifier or catalogue number |
---|---|---|
Experimental models | ||
HeLa (H. sapiens) | RIKEN | RCB007 |
HeLa penta-knocknout (penta KO) cell (H. sapiens) | Gift from Michael Lazarou | N/A |
human embryonic kidney (HEK) 293 T cell (H. sapiens) | RIKEN | RCB2202 |
Recombinant DNA | ||
HaloTag7 | Promega | G1891 |
SNAP-tag | New England BioLabs | N9181S |
pCG-gag-pol | Dr. Teruhito Yasui (National Institutes of Biomedical Innovation, Health and Nutrition, Japan) | N/A |
pCG-VSV-G | Dr. Teruhito Yasui (National Institutes of Biomedical Innovation, Health and Nutrition, Japan) | N/A |
pMRX-IPU-(MCS) | N/A | |
pMRX-IBU-(MCS) | (Morita et al, 2018) | N/A |
pMRX-IZU-HA-Parkin | RDB19764 | AddGene #38248 |
pMRX-IBU-HaloTag7-hLC3B | (Chino et al, 2019) | N/A |
pMRX-IPU-muGFP-(MCS) | (Scott et al, 2018) | N/A |
pMRX-IPU-muGFP-Ubiquitin | This study | N/A |
pMRX-IPU-muGFP-p62 | This study | N/A |
pMRX-IPU-muGFP-NDP52 | This study | N/A |
pMRX-IPU-muGFP-NBR1 | This study | N/A |
pMRX-IPU-muGFP-OPTN | This study | N/A |
pMRX-IPU-muGFP-TAX1BP1 | This study | N/A |
pMRX-IHU-mRuby-(MCS) | (Bajar et al, 2016) | N/A |
pMRX-IHU-mRuby-ubiquitin | This study | N/A |
pMRX-IHU-mRuby-nano-ubiquitin | This study | N/A |
pMRX-IPU-3×FLAG-ATG9A | This study | N/A |
pMRX-IPU-3×FLAG-ubiquitin | This study | N/A |
pMRX-IPU-3×FLAG-nano-ubiquitin | This study | N/A |
pMRX-IBU-mtHalo–SNAP | Mizushima Lab | N/A |
Antibodies | ||
rabbit polyclonal anti-OPTN | Proteintech | 10837-AP |
rabbit polyclonal anti-ATG9A | MBL | PD042 |
mouse monoclonal anti-Halo | Promega | G9211 |
mouse monoclonal anti-HSP90 | BD Transduction Laboratories | 610419 |
rabbit polyclonal anti-GFP | Thermo Fisher Scientific | A6455 |
rabbit polycolnal anti-NDP52 | Proteintech | 12229-1-AP |
rabbit polyclonal anti-RB1CC1 | Proteintech | 17250-1-AP |
rabbit monoclonal anti-phospho-TBK1 (Ser172) | Cell Signaling Technology | 5483 |
HRP-conjugated goat polyclonal anti-rabbit IgG | Jackson ImmunoResearch Laboratories | 111-035-144 |
HRP-conjugated goat polyclonal anti-mouse IgG | Jackson ImmunoResearch Laboratories | 115-035-003 |
Mouse monoclonal anti-Halo | Promega | G9211 |
Oligonucleotides and other sequence-based reagents | ||
PCR primers | This study | Table EV1 |
Chemicals, Enzymes and other reagents | ||
Dulbecco’s modified Eagle’s medium (DMEM) | Sigma-Aldrich | D6546 |
Foetal bovine serum (FBS) | Sigma-Aldrich | 173012 |
L-glutamine | Gibco | 25030-081 |
Lipofectamine 2000 | Thermo Fisher Scientific | 11668019 |
Polybrene | Sigma-Aldrich | H9268 |
Puromycin | Sigma-Aldrich | P8833 |
Blasticidin S hydrochloride | FUJIFILM Wako Pure Chemical Corporation | 022-18713 |
G418 disulfate aqueous solution | NACALAI TESQUE | 09380-86 |
Zeocin | Thermo Fisher Scientific | R25005 |
Carbonyl cyanide m-chlorophenyl hydrazine (CCCP) | Sigma-Aldrich | 555-60-2 |
Oligomycin | Cabiochem | 495455-10MGCN |
Antimycin A | Sigma-Aldrich | A8674 |
1,6-hexanediol | Sigma-Aldrich | 240117-50 G |
Wortmannin | Sigma-Aldrich | W1628-1MG |
Anti-FLAG M2 magnetic beads | Sigma-Aldrich | M8823-1ML |
SF650-conjugated Halo ligand | GoryoChemical | A308-02 |
SuperSignal West Pico Chemiluminescent Substrate | Thermo Fisher Scientific | 34579 |
Software | ||
OriginPro 2022 | ||
Fiji | ||
Other | ||
Olympus Fluoview FV3000 confocal microscope equipped with a 60× oil-immersion objective lens (1.40 NA, Olympus) | Olympus | |
Olympus SpinSR10 spinning-disk confocal super-resolution microscope equipped with a Hamamatsu ORCA-Flash 4.0 camera, a UPLAPO OHR 100 × (NA 1.50) lens | Olympus |
Cell culture and generation of stable cell lines
Plasmids
Antibodies and reagents
Immunoprecipitation and immunoblotting
Fluorescence recovery after photobleaching
Live-cell imaging
Immunofluorescence imaging
Mathematical model of autophagy adaptor condensate formation
Statistical analysis
Data availability
Author contributions
Disclosure and competing interests statement
Acknowledgements
Supporting Information
References
Information & Authors
Information
Published In
This cover highlights the article Real-time assessment of mitochondrial DNA heteroplasmy dynamics at the single-cell level by Rodaria Roussou, Christof Osman and colleagues. This study reveals how distinct mtDNA variants present in heteroplasmic cells of Saccharomyces cerevisiae segregate during multiple rounds of cell divisions through development of a live-cell imaging approach. The cover image represents a yeast cell population derived from a single heteroplasmic cell. Distinct colors represent different states of mtDNA heteroplasmy within individual cells.
Scientific image by Rodaria Roussou and Felix Thoma
Submission history
Keywords
Copyright
Authors
Research Funding
Metrics & Citations
Metrics
Citations
Download Citations
If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Select your manager software from the list below and click Download.